

Rynite[®] 830ER BK503

THERMOPLASTIC POLYESTER RESIN

Rynite® 830ER BK503 is a 30% Glass Reinforced, Polyethylene Terephthalate Developed for Encapsulation Applications

Product information Resin Identification Part Marking Code	PET-IGF30 >PET-IGF30<		ISO 1043 ISO 11469
Rheological properties			
Moulding shrinkage, parallel Moulding shrinkage, normal	0.1 0.6	, •	ISO 294-4, 2577 ISO 294-4, 2577
Typical mechanical properties			
Tensile modulus	11000	MPa	ISO 527-1/-2
Tensile stress at break, 5mm/min	170	MPa	ISO 527-1/-2
Tensile strain at break, 5mm/min	2.2		ISO 527-1/-2
Charpy impact strength, 23°C		kJ/m ²	ISO 179/1eU
Charpy notched impact strength, 23°C Poisson's ratio	9.9 0.34	kJ/m²	ISO 179/1eA
	0.04		
Thermal properties			
Melting temperature, 10°C/min	250	°C	ISO 11357-1/-3
Temperature of deflection under load, 1.8 MPa	225		ISO 75-1/-2
Temperature of deflection under load, 0.45 MPa	247		ISO 75-1/-2
RTI, electrical, 0.75mm	140		UL 746B
RTI, electrical, 1.5mm	140		UL 746B
RTI, electrical, 3.0mm RTI, impact, 0.75mm	140 140		UL 746B UL 746B
RTI, impact, 1.5mm	140	-	UL 746B
RTI, impact, 3.0mm	140		UL 746B
RTI, strength, 0.75mm	140		UL 746B
RTI, strength, 1.5mm	140	°C	UL 746B
RTI, strength, 3.0mm	140	°C	UL 746B
Flammability			
Burning Behav. at 1.5mm nom. thickn.	HB	class	IEC 60695-11-10
Thickness tested	1.5	mm	IEC 60695-11-10
UL recognition	yes		UL 94
Burning Behav. at thickness h		class	IEC 60695-11-10
Thickness tested	0.85	mm	IEC 60695-11-10
UL recognition	yes	•••	UL 94
Glow Wire Flammability Index, 3.0mm	825		IEC 60695-2-12
Glow Wire Ignition Temperature, 3.0mm FMVSS Class	800 B	U	IEC 60695-2-13 ISO 3795 (FMVSS 302)
Burning rate, Thickness 1 mm		mm/min	ISO 3795 (FMVSS 302)

Printed: 2025-05-30

Rynite[®] 830ER BK503

THERMOPLASTIC POLYESTER RESIN

Electrical properties			
Relative permittivity, 100Hz	4.3		IEC 62631-2-1
Relative permittivity, 1MHz	3.9		IEC 62631-2-1
Dissipation factor, 100Hz	20	E-4	IEC 62631-2-1
Dissipation factor, 1MHz	148	E-4	IEC 62631-2-1
Volume resistivity	>1E13	Ohm.m	IEC 62631-3-1
Surface resistivity	1E14	Ohm	IEC 62631-3-2
Electric strength	36	kV/mm	IEC 60243-1
Comparative tracking index	250		IEC 60112
Electric Strength, Short Time, 23°C, 2mm	23	kV/mm	IEC 60243-1
Physical/Other properties			
Density	1590	kg/m ³	ISO 1183
Injection			
Drying Recommended	yes		
Drying Temperature	120	°C	
Drying Time, Dehumidified Dryer	4 - 6	h	
Processing Moisture Content	≤0.02 ^[1]	%	
Melt Temperature Optimum	285	°C	
Min. melt temperature	280	°C	
Max. melt temperature	300	°C	
Screw tangential speed	≤0.2		
Mold Temperature Optimum	140	°C	
Min. mould temperature	120	+	
Max. mould temperature	140 ^[2]	•	
Hold pressure range		MPa	
Hold pressure time		s/mm	
Back pressure	As low as	MPa	
	possible		
Ejection temperature	170	°C	

[1]: At levels above 0.02%, strength and toughness will decrease, even though parts may not exhibit surface defects.[2]: (6mm - 1mm thickness)

Characteristics

Processing Special characteristics

Injection Moulding Heat stabilised or stable to heat

Additional information

Injection molding

When lower mold temperatures are used, the initial warpage and shrinkage will be lower, but the surface appearance will be poorer and the dimensional change may be greater when parts are subsequently heated.

Printed: 2025-05-30

Rynite[®] 830ER BK503

THERMOPLASTIC POLYESTER RESIN

Printed: 2025-05-30

Revised: 2025-04-22 Source: Celanese Materials Database

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colourants or other additives may cause significant variations in data values. Properties of moulded parts can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design not intended for use in medical or dental implants. Regardless of any such product expressly identified as medical grade (including by MT® product designation or otherwise), Celanese's products are not intended for use in medical or dental implants. Regardless of any such product designation, any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. Contained in this publication is accurate; however, we do not response to reduce. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication. Moreover, there is a need to reduce human exposure to many materials the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist. We recommend that persons intending to rely on any recommendation or to use any equipment, processing technique or material informat

© 2025 Celanese or its affiliates. All rights reserved. Celanese®, registered C-ball design and all other trademarks identified herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC.

Page: 3 of 3